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Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technology which is suitable
for psychiatric patients. Several fNIRS studies have found abnormal brain activations during
cognitive tasks in elderly depression. In this paper, we proposed a discriminative model of mul-
tivariate pattern classification based on fNIRS signals to distinguish elderly depressed patients
from healthy controls. This model used the brain activation patterns during a verbal fluency task
as features of classification. Then Pseudo-Fisher Linear Discriminant Analysis was performed on
the feature space to generate discriminative model. Using leave-one-out (LOO) cross-validation,
our results showed a correct classification rate of 88%. The discriminative model showed its
ability to identify people with elderly depression and suggested that fNIRS may be an efficient
clinical tool for diagnosis of depression. This study may provide the first step for the development
of neuroimaging biomarkers based on fNIRS in psychiatric disorders.

Keywords : Functional near-infrared spectroscopy (fNIRS); Fisher linear discriminant analysis
(FLDA); depression.

1. Introduction

As the number of older psychiatric patients
increases all over the world, elderly depression has
become a major public health problem. According
to related reports, 7%–10% of elderly population
are affected by depression.1 Current available diag-
nosis of depression is mainly based on clinical signs
and symptoms and medical history. Therefore, more
objective approaches are desired to help diagnose
elderly depression in clinical practice.

Functional near-infrared spectroscopy (fNIRS)
is a recently developed functional neuroimaging
technology that allows noninvasive in vivo mea-
surements of changes in the concentration of oxy-
genated ([OxyHb]) and deoxygenated ([DeoxyHb])
hemoglobin in brain issue.2 Compared to other
functional neuroimaging techniques, such as PET,
SPECT and fMRI, fNIRS is especially suitable
for psychiatric patients, due to the following rea-
sons: low insensitive to movement artifacts, less
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restrictive, and low cost. Accordingly, fNIRS has
been applied to the examination of brain functions
in various kinds of psychiatric disorders, includ-
ing schizophrenia, major depression, bipolar disor-
der, and post traumatic stress disorder.3–6 These
researches have examined task-related hemody-
namic changes and found abnormal brain functional
activities in psychiatric patients. However, these
studies were focusing on finding the most significant
differences of brain activation between psychiatric
patients and healthy subjects. Such a group-level
statistical difference is less helpful to diagnosis.

Currently, increasing attention has been devo-
ted to the applications of multivariate statistical
methods in neuroimaging data analysis.7–9 Such
methods can distinguish patients from normal con-
trols and may provide the first step toward devel-
opment neuroimaging biomarkers in psychiatry.
Unfortunately few were concerned on fNIRS infor-
mation. In this work, we assessed brain activation
of patients with elderly depression during a verbal
fluency task (VFT) measured by fNIRS. We took
the activation patterns as the classification features
and proposed a discriminative approach based on
Fisher Linear Discriminant Analysis (FLDA) to dis-
tinguish depression patients from healthy individu-
als. The performance of the classifier was evaluated
by using a leave-one-out (LOO) cross-validation
approach. As fNIRS is perfectly suitable to measure
functional brain activity in psychiatric patients, a
discriminative approach based on the fNIRS may
have potential in clinical applications.

2. Materials

2.1. Subjects

Thirteen elderly patients with major depressive dis-
order (8 males and 5 females, age 67.8 ± 5.92 years)
and 12 healthy controls (5 males and 7 females,
age 68.67 ± 6.32 years) participated in the present
study. The two groups were matched in age, sex,
and education. The patients were recruited from
the inpatients of Beijing Anding Hospital and were
diagnosed according to the criteria in the DSM-χ.10

All patients were receiving selective serotonin reup-
take inhibitors at the time of NIRS examination
(six, 20 mg paroxetine daily; two, 30 mg paroxetine
daily; four, 30 mg citalopram daily; one, 50 mg ser-
traline daily). All control subjects were medication
free and without preexisting neurological or psy-
chiatric disorders. All subjects were right-handed
and were given written informed consent before the

Fig. 1. Verbal fluency task (VFT) protocol.

start of the investigation, which was approved by
the Medical Research Ethics Committee of Beijing
Anding Hospital.

2.2. Activation task

We used a block design with four 60-s blocks con-
sisting of 30 s task and 30 s resting period (See
Fig. 1). The task was the VFT in a category
version. The subjects were instructed to produce
nouns belonging to the categories animals, vegeta-
bles, fruits, and cities in the task condition. The
order of the category was counterbalanced among
the subjects. In the resting condition, subjects were
instructed to watch a white background and avoid
movements.

2.3. NIRS measurements

NIRS measurements were conducted with a multi-
channel continuous wave optical instrument (CW 5,
TechEn Inc, American). The CW5 uses near
infrared light at two wavelengths 690 and 830 nm,
whose difference in the absorption spectrum enables
the measurement of [OxyHb] and [DeoxyHb].11

In this study, we used two 14-channel arrays of
probes for bilateral frontal lobes. Each array was
consisted of four optical laser-sources and eight
detector-receivers. A measurement point (channel)
was defined as the region between one source and
its neighbor detector (distance between the probes
was 3 cm). So one array allows to measure the rela-
tive changes in [OxyHb] and [DeoxyHb] at 14 chan-
nels and covered an area of 5.7 cm × 5.8 cm on the
scalp. The probes were mounted on two plastic hel-
mets that were held by adjustable straps over the
subject’s bilateral frontal lobes, with the most infe-
rior and former probe positioned Fp1 (left) or Fp2
(right), according to the international 10/20 system
used in electroencephalography. The measurement
points were superimposed on a magnetic resonance
image of a three-dimensionally reconstructed cere-
bral cortex. Measurement points were labeled as
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Fig. 2. The sources and detectors are superimposed on a
magnetic resonance image of a three-dimensionally recon-
structed cerebral cortex. The red circles indicate light sources
and the blue circles indicate light detectors. The numbers
between the optodes indicate the measurement channels.

Ch1-14 for right frontal channels and Ch15-28 for
left frontal channels (See Fig. 2).

3. Methods

3.1. Data Preprocessing and
feature extraction

The optical raw data were first demodulated
against the laser carrier frequencies to separate
individual source contributions and then low-pass
filtered and downsampled to 10 Hz. The data
was further analyzed with Homer software (avail-
able at http://www.nmr.mgh.harvard.edu/PMI/).
First, the data were band-pass filtered within the
range 0.01–0.5 Hz to eliminate slow drifts and
the blood pressure variations. Then the optical
signals for the two wavelengths were translated
to hemoglobin concentrations using the modified
Beer–Lambert equation.12

For applying pattern classification algorithms,
activation level of each channel was estimated by
the general linear model (GLM) approach.13 The
fNIRS time series was predicted by convolution of
a boxcar function of the stimulus design with a
hemodynamic response function (HRF) and the cor-
responding regression coefficient (beta) was taken

to represent the activation level. We calculated the
beta weights for both [OxyHb] and [DeoxyHb] data
at each channel in the task condition. Cortical acti-
vation usually causes an increase in [OxyHb] and a
corresponding decrease in [DeoxyHb].14 Thus posi-
tive beta weights in the [OxyHb] data and negative
beta weights in the [DeoxyHb] data indicated cor-
tical activation.15 In the next section, we used the
beta weights as the classification feature to discrim-
inate depression patients from healthy controls.

3.2. Pseudo-Fisher linear
discriminant analysis

FLDA is a widely used classification method
that projects high-dimensional data onto a line
and performs classification in this one-dimensional
space.8,9,16 Theoretically, this line can be found by
maximizing the ratio of between-class separability
to within-class variability. To this purpose FLD con-
siders maximizing the following objective function:

J(ω) =
ωT SBω

ωT SW ω
, (1)

where SB is the between class scatter matrix and
SW is the within classes scatter matrix. The defini-
tions of the scatter matrices are:

SB = (m1 − m2)(m1 − m2)T , (2)

SW =
N1∑

i=1

(xi
1 − m1)(xi

1 − m1)
T

+
N2∑

i=1

(xi
2 − m2)(xi

2 − m2)
T
, (3)

where x1
i (i = 1, 2, . . . , N1) and x2

i (i = 1, 2, . . . , N2)
are n-dimensional feature vector of each sample, m1

and m2 are mean feature vectors, and N1 and N2

are sample sizes of two classes, respectively. In this
study, the feature vectors are the beta weights rep-
resenting the activation level during the task condi-
tion obtained in Sec. 3.1. Theoretically, the optical
projective direction can be determined by:

ω∗ = S−1
W (m1 − m2). (4)

However, the number of features is higher than the
number of total training samples in this research.
Computing inverse matrix of SW will lead to an
ill-posed problem and therefore FLD would yield
an unreliable result. To solve this problem, we
used a Pseudo-Fisher Linear Discriminant analysis
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(pFLDA) which first applied a Principal Compo-
nent Analysis (PCA) on the sample feature x ∈ �n

to get a low-dimensional feature x′ ∈ �n′
(n′ ≤

N1 +N2−1). Then the classical FLD procedure can
be performed in the low-dimensional feature space
to find ω∗ ∈ �n′

.
Projecting each sample x′ ∈ �n′

on to the direc-
tion ω∗ ∈ �n′

to get a discriminative score z by:

z = ω∗T x′. (5)

Finally, the classification threshold z0 is deter-
mined by:

z0 = (N1m
z
1 + N2m

z
2)/(N1 + N2), (6)

where mz
1 and mz

2 are the mean values of the
discriminative scores of the two classes.

3.3. Leave-one-out (LOO)
cross-validation

The LOO approach has been widely used as a
reliable estimator of the true generalization per-
formance, especially when the sample size is very
limited.8 When using the LOO method, the learn-
ing algorithm is trained multiple times, using all
but one of the training set. In this study, one sub-
ject was first selected as a testing sample, and the
remaining subjects were trained for discriminative
model.

Fig. 3. Distribution of discriminative scores in 25-round LOO test based on the [OxyHb] data.

4. Experimental Results

There were totally 25 samples in this work, includ-
ing 13 depression patients and 12 healthy controls
and the grand average fNIRS time courses were
shown in Fig. s1 and s2 (see Supplementary mate-
rial for details). pFLDA was applied to the feature
vectors extracted from the [OxyHb] and [DeoxyHb]
data, respectively.

We evaluated the performance of the classifier
using a full LOO cross-validation. In each LOO val-
idation case, one subject was first selected as a test-
ing sample, and the remaining subjects were trained
for discriminative model. Classification results were
listed in Table 1. The pattern of brain activity
revealed by the [OxyHb] data correctly classified
up to 88% (92% for patients and 83% for control
subjects), while the classification accuracy based on
the [DeoxyHb] data was 80% (77% for patients and
83% for controls). The distribution of discriminative
scores of both the training and testing samples in
a 25-round LOO test were shown in Figs. 3 and 4.

Table 1. Classification results.

LOO test correct rate

Discriminative Training set Depression Controls Total
model correct rate (%) (%) (%) (%)

[OxyHb] 100 92 83 88

[DeoxyHb] 100 77 83 80
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Fig. 4. Distribution of discriminative scores in 25-round LOO test based on the [DexyHb] data.

As in Fig. 2, there are only two testing controls
(rounds 6 and 9) and one testing patients (round
13) located on the wrong sides of the classification
boundary by the classifier based on the [OxyHb]
data. And in Fig. 3, there are two testing controls
(rounds 6 and 10) and three testing patients (rounds
13, 19, and 23) located on the wrong sides of the
classification boundary by the classifier based on
the [DeoxyHb] data.

5. Discussion and Conclusion

The present study proposed a multivariate classi-
fication approach for distinguishing patients with
elderly depression from normal controls based
on the pattern of brain activity during a VFT
measured by fNIRS. The experimental results indi-
cated that the proposed method achieved satisfac-
tory classification accuracy in this study.

As noted in the Introduction part, fNIRS is a
noninvasive neuroimaging technique, with low cost
and the possibility for examinations in a natu-
ral setting, it is perfectly suitable for psychiatric
patients. Previous researches have found abnormal
brain activation of psychiatric patients using fNIRS
in cognitive tasks.3–6 Accordingly, the brain acti-
vation pattern is a promising feature for the clas-
sification of psychiatric disorders and we used it in
this study as the classification feature for depressed
patients.

Besides the classification feature, learning algo-
rithm is another important aspect of pattern

recognition. In the present study, we adopted
FLDA, one of linear learning algorithms, because
they are more insensitive to overfitting problems
than nonlinear ones, especially in the case of high
feature dimension and small sample size.9 We also
compared with other two classifiers, Batch Percep-
tron and SVM.17 The classification rates were 56%
for Batch Perceptron and 80% for SVM. Both of
them were lower than the proposed classifier (88%).

Our results also showed that the discriminative
model based on the [OxyHb] data had higher clas-
sification accuracy than the [DeoxyHb] data. This
can be explained by the findings of Ehlis et al.18

that an increase in [OxyHb] is the best indictor in
cognitive fNIRS studies.

Future work will involve the evaluation of the
proposed method with a new and larger sample
and combining with other types of features to
improve the efficiency of the discriminative model.
Our results suggested that fNIRS may be a promis-
ing clinical tool for helping diagnose depression.
Such analysis of neuroimaging data with multivari-
ate pattern analysis methods may provide the first
step toward developing neuroimaging biomarkers in
psychiatry.
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